# Explore STEM en Español with PLTW Launch

Ashley Bocanegra – PLTW Wendy Hammitt – Santa Ana Unified School District Liza Villa – Santa Ana Unified School District

### What We'll Be Sharing

- Modeling the ELL Experience
- STEM Representation Data
- Dual Immersion Across the US
- Multilingualism: Student Outcomes
- Santa Ana's Launch Story
- PLTW in Action in Dual Immersion
- Explore a Module in Spanish



# Can you figure out the topic of this children's video lesson? What's the catch? It's in Mandarin!

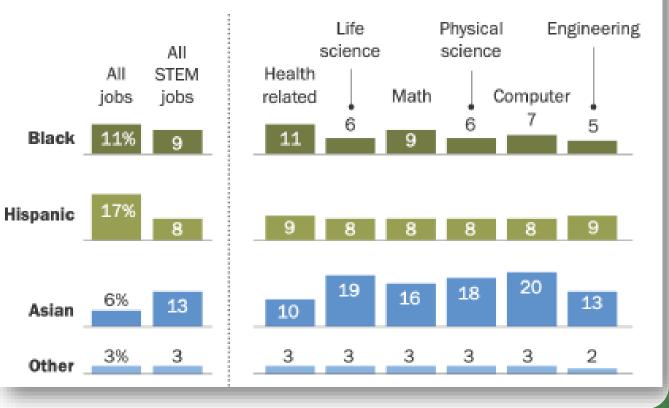


# This video lesson is called... Water is Precious

### What was the lesson about?

# What was challenging about this activity?

# If you do not speak Mandarin, how did this activity make you feel?


# Time for a Pop Quiz! Hispanic Representation in STEM

### Workforce Representation

Hispanic workers represent **8%** of the STEM workforce and **17%** of the total workforce in the US.

#### Black and Hispanic workers remain underrepresented in the STEM workforce

% who are ...





### STEM Field Representation

Hispanic workers represent: **9**% of Healthcare Workers **8**% of Computer Scientists **9**% of Engineers & Architects **8**% of Life Scientists

#### Over 19 million workers are employed in STEM occupations

Current employment and projected growth in each category

|                                             | Employment<br>(millions) | Projected %<br>change,<br>2019-29 |
|---------------------------------------------|--------------------------|-----------------------------------|
| All employed                                | 137.4                    | +3.7                              |
| STEM employed                               | 19.1                     | +9.2                              |
| Healthcare practitioners and<br>technicians | 9.8                      | +10.1                             |
| Computer workers                            | 5.0                      | +11.4                             |
| Engineers/architects                        | 3.0                      | +2.8                              |
| Physical scientists                         | 0.7                      | +4.8                              |
| Life scientists                             | 0.3                      | +4.8                              |
| Mathematical workers                        | 0.3                      | +26.6                             |
| Non-STEM employed                           | 118.3                    | +3.0                              |



### **STEM College Graduates**

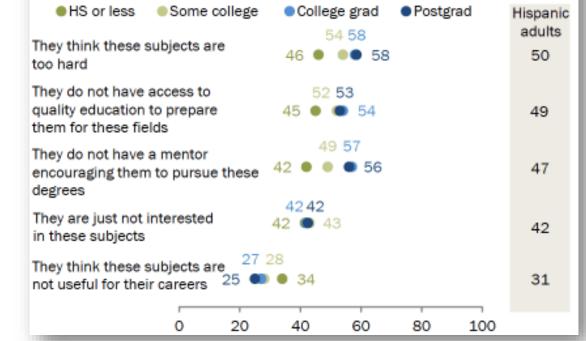
Hispanic students represent **12%** of students graduating with a Bachelor's degree in STEM

#### Growth in STEM degrees far outpaces overall growth in degrees awarded since 2010

Total number of degrees awarded and % of degrees awarded to U.S. citizens and permanent residents

| Bachelor's                | 2010       | 2014      | 2018      | Change,<br>2010-18 | % U.S. citizens<br>and permanent<br>residents,<br>2018 |
|---------------------------|------------|-----------|-----------|--------------------|--------------------------------------------------------|
| All degrees               | 1,670,400  | 1,892,800 | 2,008,300 | 20%                | 95%                                                    |
| STEM degrees              | \$ 412,100 | 542,100   | 669,600   | 62                 | 94                                                     |
| Master's                  |            |           |           |                    |                                                        |
| All degrees               | 702,600    | 765,600   | 833,300   | 19                 | 82                                                     |
| STEM                      | 146,300    | 192,200   | -         | 80                 | 67                                                     |
| Research<br>doctorate     |            |           |           |                    |                                                        |
| All degrees               | 57,600     | 67,800    | 73,100    | 27                 | 73                                                     |
| STEM                      | 28,700     | 34,500    | 38,000    | 32                 | 61                                                     |
| Professional<br>doctorate |            |           |           |                    |                                                        |
| All degrees               | 101,000    | 109,700   | 111,300   | 10                 | 97                                                     |
| STEM                      | 52,900     | 61,300    | 72,000    | 36                 | 97                                                     |




V LLC aitizana

### **Pursuing STEM Degrees**

On average, **51%** of Hispanic Americans feel it is because they don't have access to education that prepares them for STEM

#### College-educated Hispanic adults more likely to see lack of access to quality education as a major reason young people do not pursue STEM degrees

% of Hispanic adults who say each of the following is a **major reason** many young people do not pursue college degrees in science, technology, engineering and mathematics





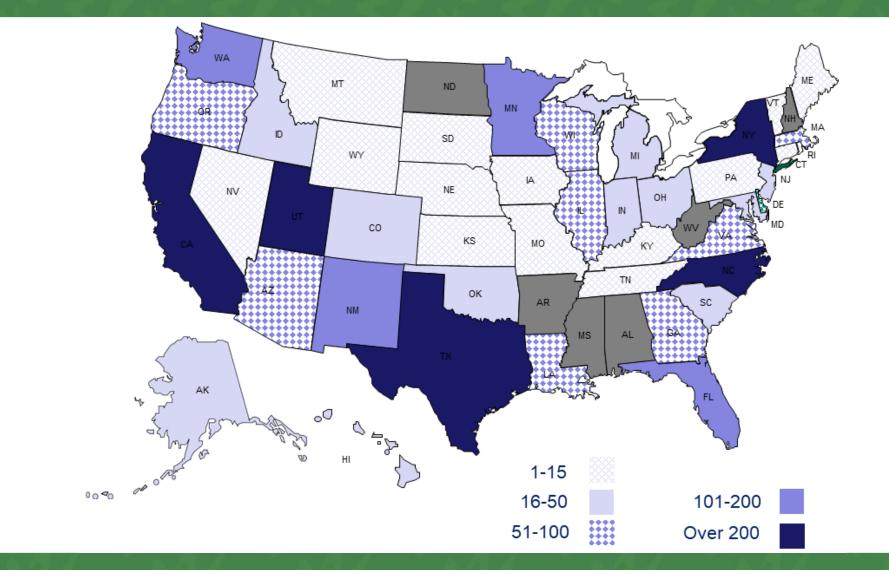
### **STEM Classroom Experience**

**87%** of Hispanic adults working in STEM reported having positive experiences with STEM in the classroom.

#### About nine-in-ten Hispanic college graduates working in STEM jobs recall positive classroom experiences

Among employed adults with a college degree or more education, % who say in their most recent STEM schooling, they had someone who ...

| Not     POSITIVE EXPERIENCES                                                          |         | panic adults<br>● Work in STE |    | U.S. adults<br>Working in<br>STEM |
|---------------------------------------------------------------------------------------|---------|-------------------------------|----|-----------------------------------|
| Helped you see ways these subjects<br>could be useful for your job or career          | 52 🛛    | • 75                          | ;  | 70                                |
| Made you feel excited about<br>your abilities in these subjects                       | 49 鱼    | • 73                          |    | 70                                |
| Encouraged you to keep taking<br>classes in these subjects                            | 50 •    | • 71                          |    | 68                                |
| NET at least one positive<br>experience                                               | (       | 65 🗕 🕚                        | 87 | 82                                |
| NEGATIVE EXPERIENCES                                                                  |         |                               |    | -                                 |
| Treated you as if you could not<br>understand these subjects                          | 34 🐽 36 |                               |    | 24                                |
| Made you feel like you didn't<br>belong in these classes 25<br>Made repeated negative | •• 31   |                               |    | 18                                |
|                                                                                       | 19      |                               |    | 8                                 |
| NET at least one negative experience                                                  | 43 🍽 4  | 5                             |    | 33                                |
| 0 20                                                                                  | 40      | 60 80                         | 10 | 0                                 |






Can you remember a teacher who made learning feel like this for you?

# **Confidence in STEM Starts in Your Classrooms!**

#### Nearly 80% of all DLI Programs are Spanish



# The Impact of Multilingualism for Students

### What the Research Says...

### Cognitive

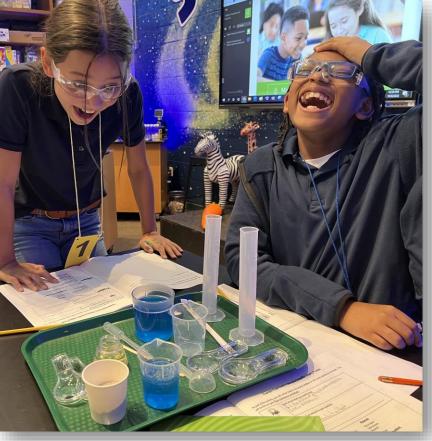
- Neuroplasticity
- Increased executive function
- Higher levels of abstract thought & reasoning

### Education

- Improved learning outcomes across subjects
- Higher graduation rates among 1<sup>st</sup> gen students

### Sociocultural

- Increased empathy & global awareness
- Improved self-esteem & crossgroup relationships

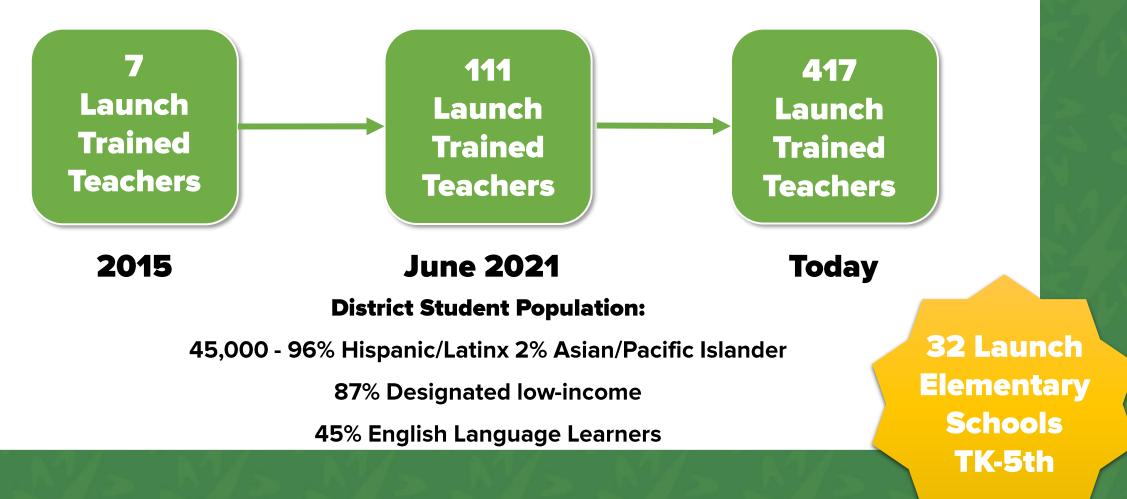

### • Economic

- Greater job opportunities across public & private sectors
- Increased earning potential



### **PLTW Transportable Skills**






### **PLTW Skills + Multiligual Outcomes**



## SAUSD + PLTW Launch Santa Ana, CA

### **Growing PLTW Launch in SAUSD**



### **PLTW for Science: NGSS Alignment**

| Grade        | Module 1                                     | Module 2                                           | Module 3                                         |
|--------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| ТК           | PreK.3 - Healthy Habits                      | PreK.1 - Life Science:<br>Living & Non Living      | PreK.2 - Matter:<br>Sinking & Floating           |
| Kindergarten | K.6 - Living Things:<br>Needs & Impacts      | K.5 - Sunlight & Weather                           | K.2 - Pushes & Pulls                             |
| First Grade  | 1.5 - Designs Inspired by Nature             | 1.2 - Light:<br>Observing the Sun, Moon & Stars    | 1.1 - Light & Sound                              |
| Second Grade | 2.3 - The Changing Earth                     | 2.5 - Living Things: Diversity of<br>Life          | 2.1 - Materials Science:<br>Properties of Matter |
| Third Grade  | 3.3 - Variation of Traits                    | 3.2 - Stability & Motion:<br>Forces & Interactions | 3.5 - Weather:<br>Factors & Hazards              |
| Fourth Grade | 4.9 - Energy Exploration                     | 4.6 - Organisms:<br>Structure & Function           | 4.7 - Earth:<br>Past, Present & Future           |
| Fifth Grade  | 5.8 - Earth's Water & Interconnected Systems | 5.6 - Ecosystems:<br>Flow of Matter & Energy       | 5.5 - Matter:<br>Properties & Reactions          |

# Mr. Silva & Monroe Elementary

### **Monroe Eagles Discovery Lab**





Mo
 Mo

#### Actividad 1: El Cuerpo Humano

Descubre qué buen trabajo hiciste al colocar los órganos en su parte correspondiente. Si pusiste alguno en un área equivocada no te preocupes. Puedes acomodarlo

ahora. Después de ver lo que hay dentro de ti, ve lo que hay por fuera. ¿Cómo es tu cuerpo por fuera?

O Type here to search





"When you experienced the PLTW activity, we were learning science, problem solving, and collaboration and we didn't even know it. I personally left that room with a smile on my face. What if every student across the district K-12, left their classrooms with a smile on their face because they experienced [PLTW]?"

-Jerry Almendarez, Superintendent of Schools

# Historia Introductoria: Salven al Tigre!

### ¡Salven al tigre!

0.0

Estabilidad y movimiento: fuerzas e interacciones

#### **PLTW Launch**



—¿Recuerdan lo que leímos? —preguntó Suzi. —iLos tigres pueden pesar hasta 600 libras! Yo no puedo cargar a un tigre de 600 libras.

-Por supuesto que no respondió Mylo. -¿Y qué tal si construimos algo para levantar al tigre y sacarlo del foso? La Srta. Morales dijo que aprenderíamos sobre máquinas cuando regresáramos a la escuela. Me pregunto si podemos diseñar una máquina para levantar al tigre.



—iMe encantan los paseos escolares! ¿A ti no, Angelina? preguntó Mylo.

iPor supuesto! —respondió Angelina. —Nada de tareas, ni trabajo en clases, ni aprender cosas nuevas.

Yo estoy aprendiendo bastante hoy —dijo Suzi.
—Con tan solo mirar a tu alrededor, puedes aprender un montón de cosas nuevas en el zoológico.



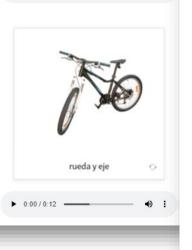
Interactions Teach...

Interactions...

#### Parte 2. Máquinas simples

Escucha mientras tu maestro lee en voz alta el libro How Do You Lift a Lion? (¿Cómo cargar a un león?), de Robert E. Wells. Piensa en cómo se usan las fuerzas, las interacciones y el movimiento para realizar las tareas en el libro.

• :






máquina simple

▶ 0:00 / 0:22 -

(17) Consulta la siguiente presentación para ayudarte a completar los pasos finales en el ensamblaje de la polea.





#### 0000

#### LAUNCH LOG DE PLTW

- Etiqueta una nueva página en tu Launch Log con "Polea" como encabezado.
- Dibuja el sistema de polea en tu Launch Log.
- Etiqueta las poleas y la carga que soportan.

#### Operador de maquinaria pesada

Los operadores de maquinaria pesada conducen y controlan máquinas grandes que se utilizan para construir carreteras, edificios y otras estructuras. Deben estar capacitados para manejar la maquinaria pesada de manera segura sin importar las condiciones meteorológicas.



#### ¿Qué tipo de máquinas compuestas

utilizan los operadores de maquinaria pesada en su trabajo? Estudiemos el camión volquete y la grúa de construcción.



Observa este camión volquete. ¿Qué máquinas simples ves? Los camiones volquete tienen un plano inclinado, una palanca y varias ruedas y ejes. ¿Cómo trabajan en conjunto las máquinas simples en esta máquina compuesta?

#### CONEXIONES FAMILIARES



- Den un paseo en bicicleta por su vecindario. Mientras lo hacen, pida a su hijo que explique por qué la bicicleta se considera una máquina compuesta.
- Durante el paseo en bicicleta o una caminata en familia, identifique ejemplos de máquinas compuestas en su vecindario.

#### PLTW

#### LAUNCH

#### Problema

#### **Rescate de animales**

#### NTRODUCCIÓN

Los animales, tanto en su entorno natural como en los zoológicos, pueden caer accidentalmente en barrancos u otros agujeros profundos. Los rescatistas deben tener mucho cuidado cuando ayudan a animales atrapados como caballos, leones y elefantes. Estos animales pueden ser muy grandes y requerir del uso de máquinas que ejerzan suficiente **fuerza** para levantarlos y rescatarlos.

Ya has aprendido sobre las **fuerzas de acción** 💬 y **las fuerzas de resistencia** 💬 en las **máquinas simples** 💬 y las **máquinas compuestas** 💬 . También has investigado sobre los **imanes** 💬 y cómo **interactúan** 💬 con objetos que no están tocando. Ahora, usarás lo que has aprendido para resolver el problema de diseñar un dispositivo de rescate animal para sacar a un tigre de un foso.





### Resources

Funk, C., & Lopez, H. (2022, June 14). Hispanic Americans' Trust in and Engagement With Science. Pew Research Center. Retrieved January 17, 2024, from <a href="https://www.pewresearch.org/science/2022/06/14/hispanic-americans-trust-in-and-engagement-with-science/">https://www.pewresearch.org/science/2022/06/14/hispanic-americans-trust-in-and-engagement-with-science/</a>

Kroll JF, Dussias PE. The Benefits of Multilingualism to the Personal and Professional Development of Residents of The US. Foreign Lang Ann. 2017 Summer;50(2):248-259. doi: 10.1111/flan.12271. Epub 2017 May 18. PMID: 29097822; PMCID: PMC5662126. Retrieved January 17, 2024, from <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662126/</u>

Society of Hispanic Professional Engineers & Latino Donor Collaborative (2023, September 27). SHPW-LDC U.S. Latinos in Engineering and Tech Report. Latino Data Collaborative Think Tank. Retrieved January 17, 2024, from <a href="https://www.Latinodonorcollaborative.Org/">https://www.Latinodonorcollaborative.Org/</a>