PLTW Launch Standards Connection Infection: Modeling and Simulation # **Connections to Standards in PLTW Launch** PLTW curriculum is designed to empower students to thrive in an evolving world. As a part of the design process when developing and updating our curriculum, we focus on connections to a variety of standards. This PLTW Launch module connects to standards in the following: | Next Generation Science Standards | Page | 2 | |--|------|----| | Computer Science Teachers Association K-12 Computer Science Standards | Page | 5 | | International Society for Technology in Education Standards for Students | Page | 7 | | Common Core State Standards English Language Arts - Fifth Grade | Page | 10 | | Common Core State Standards Mathematics - Fifth Grade | Page | 12 | # **Next Generation Science Standards** # **Engineering Design** 3-5-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. 3-5-FTS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. 3-5-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. # Science and Engineering Practices: Asking Questions and Defining Problems Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships. • Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. # Science and Engineering Practices: Developing and Using Models Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. # Science and Engineering Practices: Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions. • Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. # Science and Engineering Practices: Analyzing and Interpreting Data Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used. # Science and Engineering Practices: Using Mathematics and Computational Thinking Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 2 of 15 # **Next Generation Science Standards** ### Science and Engineering Practices: Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems. • Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. # Science and Engineering Practices: Engaging in Argument from Evidence Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s). • Construct and/or support an argument with evidence, data, and/or a model. ## Science and Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods. ## **Disciplinary Core Ideas (3-5)** Engineering, Technology, and Applications of Science ETS1.A Defining and Delimiting Engineering Problems • Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. #### ETS1.B Developing Possible Solutions • Research on a problem should be carried out before beginning to design a solution. # ETS1.B Developing Possible Solutions • At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. #### ETS1.B Developing Possible Solutions • Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. #### ETS1.C Optimizing the Design Solution • Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 3 of 15 # **Next Generation Science Standards** ### **Crosscutting Concepts (3-5)** Cause and Effect: Mechanism and Prediction – Events have causes, sometimes simple, sometimes multifaceted. Deciphering causal relationships, and the mechanisms by which they are mediated, is a major activity of science and engineering. • Cause and effect relationships are routinely identified, tested, and used to explain change. Systems and System Models – A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems. • A system can be described in terms of its components and their interactions. ## Connections to Engineering, Technology, and Applications of Science (3-5) Influence of Science, Engineering, and Technology on Society and the Natural World - People's needs and wants change over time, as do their demands for new and improved technologies. - Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 4 of 15 # **Computer Science Teachers Association K-12 Computer Science** In Spring 2023 PLTW submitted all necessary documentation required by the Computer Science Teachers Association (CSTA) for a crosswalk review of our Launch and Gateway curricula by the CSTA Standards Review Team. While we anticipate approval and validation by CSTA, the review is pending. # **Computing Systems** Troubleshooting 1B-CS-03 Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies. #### **Networks and the Internet** Cybersecurity 1B-NI-05 Discuss real-world cybersecurity problems and how personal information can be protected. ### **Data and Analysis** Collection Visualization & Transformation 1B-DA-06 Organize and present collected data visually to highlight relationships and support a claim. #### Inference & Models 1B-DA-07 Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea. # **Algorithms and Programming** Algorithms 1B-AP-08 Compare and refine multiple algorithms for the same task and determine which is the most appropriate. #### Variables 1B-AP-09 Create programs that use variables to store and modify data. #### Control 1B-AP-10 Create programs that include sequences, events, loops, and conditionals. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 5 of 15 # **Computer Science Teachers Association K-12 Computer Science** ### Modularity 1B-AP-11 Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. #### Modularity 1B-AP-12 Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features. ### **Program Development** 1B-AP-13 Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. #### **Program Development** 1B-AP-14 Observe intellectual property rights and give appropriate attribution when creating or remixing programs. ### **Program Development** 1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended. # Program Development 1B-AP-16 Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. ## **Program Development** 1B-AP-17 Describe choices made during program development using code comments, presentations, and demonstrations. # **Impacts of Computing** #### Social Interactions 1B-IC-20 Seek diverse perspectives for the purpose of improving computational artifacts. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 6 of 15 # International Society for Technology in Education Standards for Students ### **Empowered Learner** 1a Students articulate and set personal learning goals, develop strategies leveraging technology to achieve them and reflect on the learning process itself to improve learning outcomes. 1c Students use technology to seek feedback that informs and improves their practice and to demonstrate their learning in a variety of ways. #### **Digital Citizen** 2a Students cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world. 2b Students engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices. 2c Students demonstrate an understanding of and respect for the rights and obligations of using and sharing intellectual property. 2d Students manage their personal data to maintain digital privacy and security and are aware of datacollection technology used to track their navigation online. # **Knowledge Constructor** 3d Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions. # **Innovative Designer** 4a Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems. 4b Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks. 4c Students develop, test and refine prototypes as part of a cyclical design process. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 7 of 15 # International Society for Technology in Education Standards for Students 4d Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with open-ended problems. # **Computational Thinker** 5a Students formulate problem definitions suited for technology-assisted methods such as data analysis, abstract models and algorithmic thinking in exploring and finding solutions. 5b Students collect data or identify relevant data sets, use digital tools to analyze them, and represent data in various ways to facilitate problem-solving and decision-making. 5c Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving. 5d Students understand how automation works and use algorithmic thinking to develop a sequence of steps to create and test automated solutions. #### **Creative Communicator** 6a Students choose the appropriate platforms and tools for meeting the desired objectives of their creation or communication. 6b Students create original works or responsibly repurpose or remix digital resources into new creations. 6c Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations. 6d Students publish or present content that customizes the message and medium for their intended audiences. #### **Global Collaborator** 7a Students use digital tools to connect with learners from a variety of backgrounds and cultures, engaging with them in ways that broaden mutual understanding and learning. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 8 of 15 # International Society for Technology in Education Standards for Students 7b Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints. 7с Students contribute constructively to project teams, assuming various roles and responsibilities to work effectively toward a common goal. 7d Students explore local and global issues and use collaborative technologies to work with others to investigate solutions. # Common Core State Standards English Language Arts - Fifth Grade ## **Reading Informational Text Standards** Key Ideas and Details CCSS.ELA-LITERACY.RI.5.2 Determine two or more main ideas of a text and explain how they are supported by key details; summarize the text. ### Craft and Structure CCSS.ELA-LITERACY.RI.5.4 Determine the meaning of general academic and domain-specific words and phrases in a text relevant to a grade 5 topic or subject area. #### Integration of Knowledge and Ideas CCSS.ELA-LITERACY.RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. CCSS.ELA-LITERACY.RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. ## **Writing Standards** **Text Types and Purposes** CCSS.ELA-LITERACY.W.5.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. #### Research to Build and Present Knowledge CCSS.ELA-LITERACY.W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. CCSS.ELA-LITERACY.W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. # **Speaking and Listening Standards** Comprehension and Collaboration CCSS.ELA-LITERACY.SL.5.1 Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 5 topics and texts, building on others' ideas and expressing their own clearly. CCSS.ELA-LITERACY.SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 10 of 15 # Common Core State Standards English Language Arts - Fifth Grade © Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved. # Common Core State Standards Mathematics - Fifth Grade ### **Operations and Algebraic Thinking** Write and interpret numerical expressions. CCSS.MATH.CONTENT.5.OA.A.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. ### **Number and Operations in Base Ten** Understand the place value system. CCSS.MATH.CONTENT.5.NBT.A.3 Read, write, and compare decimals to thousandths. CCSS.MATH.CONTENT.5.NBT.A.4 Use place value understanding to round decimals to any place. Perform operations with multi-digit whole numbers and with decimals to hundredths. CCSS.MATH.CONTENT.5.NBT.B.6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. #### **Mathematical Practices** CCSS.MATH.PRACTICE.MP1 Make sense of problems and persevere in solving them. CCSS.MATH.PRACTICE.MP2 Reason abstractly and quantitatively. CCSS.MATH.PRACTICE.MP3 Construct viable arguments and critique the reasoning of others. CCSS.MATH.PRACTICE.MP4 Model with mathematics. CCSS.MATH.PRACTICE.MP5 Use appropriate tools strategically. CCSS.MATH.PRACTICE.MP6 Attend to precision. CCSS.MATH.PRACTICE.MP8 Look for and express regularity in repeated reasoning. © 2024 Project Lead The Way, Inc. Infection: Modeling and Simulation: Page 12 of 15 # **Common Core State Standards Mathematics - Fifth Grade** © Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved. # Common Core State Standards Mathematics - Fifth Grade # **Included in Optional Extensions** ## **Operations and Algebraic Thinking** Analyze patterns and relationships. CCSS.MATH.CONTENT.5.OA.B.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For exa #### Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. CCSS.MATH.CONTENT.5.G.A.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numb CCSS.MATH.CONTENT.5.G.A.2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. #### **Mathematical Practices** CCSS.MATH.PRACTICE.MP7 Look for and make use of structure. # References Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards, revised 2017. http://www.csteachers.org/standards International Society for Technology in Education. (2016). *ISTE standards for students*. http://www.iste.org/standards/for-students National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). *Common Core State Standards*. National Governors Association Center for Best Practices, Council of Chief State School Officers. NGSS Lead States. (2013). *Next Generation Science Standards: For states, by states.* National Academies Press.